[om] odesoln1.ocd

Bill Naylor Bill.Naylor at mcs.vuw.ac.nz
Wed Jul 16 07:41:05 CEST 2003


Hi James,

I have constructed a content dictionary for ODE solutions as per your idea
at Linz, I attach it. Could you let me know whether this is what you
intended, and if so I shall submit it to the OpenMath submission site.

cheers,

Bill.
-------------- next part --------------
<?xml version="1.0"?>

<CD>
  <CDName> odesoln1 </CDName>
  <CDURL> http://www.openmath.org/CDs/odesoln1.ocd </CDURL>
  <CDDate> 16/7/2001 </CDDate>
  <CDReviewDate> 1/1/5000 </CDReviewDate>
  <CDVersion> 1 </CDVersion>
  <CDRevision> 0 </CDRevision>
  <CDStatus> experimental </CDStatus>
  <CDUses>
    <CDName> alg1 </CDName>
    <CDName> arith1 </CDName>
    <CDName> calculus1 </CDName>
    <CDName> fns1 </CDName>
    <CDName> list1 </CDName>
    <CDName> relation1 </CDName>
  </CDUses>

  <Description>
    this content dictionary contains a symbol for specifying solutions
    of ordinary differential equations (ODEs). It is especially useful
    in the definition of special function symbols.
  </Description>

  <CDDefinition>
    <Name> ODEsolution </Name>
    <Description>
This symbol should be used for specifying solutions to ordinary
differential equations (ODEs). The symbol should be used inside a binder
element. There should be two OpenMath variables inside the OMBVAR
child, the first should be a label for the unknown function (appearing
in the defining expression) and the second should be a label for the
argument to this function, in the rest of this description we shall
refer to these as $f$ and $x$ respectively.
The first argument to the symbol (the third child to the inclosing
OMBIND element) should be an expression in $f$ and $x$ which defines
the left hand side of the ODE (implicitly = 0).
The second argument should be a list of expressions in $f$ representing
initial/boundary conditions.
The returned value should be the function which is a solution to the
ODE specified in the first argument, with initial conditions specified
in the second argument.
    </Description>
    <Example>
Specification of the solution to the ordinary differential equation:

$$f^\prime(x)-f(x)+x = 0$$

with initial conditions:

$$f(0) = 1$$

namely $f(x)=x+1$

      <OMOBJ>
        <OMA>
          <OMS cd="relation1" name="eq"/>
          <OMBIND>
            <OMS cd="odesoln1" name="ODEsolution"/>
            <OMBVAR>
              <OMV name="f"/>
              <OMV name="x"/>
            </OMBVAR>
            <OMA>
              <OMS cd="arith1" name="plus"/>
              <OMA>
                <OMS cd="arith1" name="minus"/>
                <OMA>
                  <OMS cd="calculus1" name="diff"/>
                  <OMBIND>
                    <OMS cd="fns1" name="lambda"/>
                    <OMBVAR>
                      <OMV name="x"/>
                    </OMBVAR>
                    <OMA>
                      <OMV name="f"/>
                      <OMV name="x"/>
 <OMComment> N.B. this 'x' is from the inner 'lambda' binding </OMComment>
                    </OMA>
                  </OMBIND>
                </OMA>
                <OMBIND>
                  <OMS cd="fns1" name="lambda"/>
                  <OMBVAR>
                    <OMV name="x"/>
                  </OMBVAR>
                  <OMA>
                    <OMV name="f"/>
                    <OMV name="x"/>
<OMComment> see above coment </OMComment>
                  </OMA>
                </OMBIND>
              </OMA>
              <OMV name="x"/>
<OMComment> this 'x' is from the outer 'ODEsolution' binding </OMComment>
            </OMA>
            <OMA>
              <OMS cd="list1" name="list"/>
              <OMA>
                <OMS cd="relation1" name="eq"/>
                <OMA>
                  <OMV name="f"/>
                  <OMI> 0 </OMI>
                </OMA>
                <OMI> 1 </OMI>
              </OMA>
<OMComment>
in this case there is only 1 element in the list of conditions,
however in general there will be $n$ elements where $n$ is the degree
of the ODE
</OMComment>
            </OMA>
          </OMBIND>
          <OMBIND>
            <OMS cd="fns1" name="lambda"/>
            <OMBVAR>
              <OMV name="x"/>
            </OMBVAR>
            <OMA>
              <OMS cd="arith1" name="plus"/>
              <OMV name="x"/>
              <OMS cd="alg1" name="one"/>
            </OMA>
          </OMBIND>
        </OMA>
      </OMOBJ>
    </Example>
  </CDDefinition>
</CD>
-------------- next part --------------
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>odesoln1</title>
<link rel="stylesheet" href="../omcd.css" type="text/css">
</head>
<body>
<a name="top"></a><h1>OpenMath Content Dictionary: odesoln1</h1>
<dl>
<dt><span class="dt">Canonical URL:</span></dt>
<dd><a href="http://www.openmath.org/CDs/odesoln1.ocd">http://www.openmath.org/CDs/odesoln1.ocd</a></dd>
<dt><span class="dt">CD File:</span></dt>
<dd><a href="../../cd/odesoln1.ocd">odesoln1.ocd
  </a></dd>
<dt><span class="dt">CD as XML Encoded OpenMath:</span></dt>
<dd><a href="../../omcd/odesoln1.omcd">odesoln1.omcd
  </a></dd>
<dt><span class="dt">Defines:</span></dt>
<dd><a href="#ODEsolution">ODEsolution</a></dd>
<dt><span class="dt">Date:</span></dt>
<dd> 16/7/2001 </dd>
<dt><span class="dt">Version:</span></dt>
<dd> 1 </dd>
<dt><span class="dt">Review Date:</span></dt>
<dd> 1/1/5000 </dd>
<dt><span class="dt">Status:</span></dt>
<dd> experimental </dd>
<dt><span class="dt">Uses CD:</span></dt>
<dd>
<a href="alg1.html">alg1</a>, <a href="arith1.html">arith1</a>, <a href="calculus1.html">calculus1</a>, <a href="fns1.html">fns1</a>, <a href="list1.html">list1</a>, <a href="relation1.html">relation1</a>
</dd>
</dl>
<hr>
  
  
  
  
  
  
  
  

  <p>
    this content dictionary contains a symbol for specifying solutions
    of ordinary differential equations (ODEs). It is especially useful
    in the definition of special function symbols.
  </p>

  <hr>
    <h2><a name="ODEsolution"> ODEsolution </a></h2>
    <p>
This symbol should be used for specifying solutions to ordinary
differential equations (ODEs). The symbol should be used inside a binder
element. There should be two OpenMath variables inside the OMBVAR
child, the first should be a label for the unknown function (appearing
in the defining expression) and the second should be a label for the
argument to this function, in the rest of this description we shall
refer to these as $f$ and $x$ respectively.
The first argument to the symbol (the third child to the inclosing
OMBIND element) should be an expression in $f$ and $x$ which defines
the left hand side of the ODE (implicitly = 0).
The second argument should be a list of expressions in $f$ representing
initial/boundary conditions.
The returned value should be the function which is a solution to the
ODE specified in the first argument, with initial conditions specified
in the second argument.
    </p>
    <dl>
<dt><span class="dt">Example:</span></dt>
<dd>
Specification of the solution to the ordinary differential equation:

$$f^\prime(x)-f(x)+x = 0$$

with initial conditions:

$$f(0) = 1$$

namely $f(x)=x+1$

      <pre>&lt;OMOBJ&gt;
        &lt;OMA&gt;
          &lt;OMS cd=&quot;relation1&quot; name=&quot;eq&quot;/&gt;
          &lt;OMBIND&gt;
            &lt;OMS cd=&quot;odesoln1&quot; name=&quot;ODEsolution&quot;/&gt;
            &lt;OMBVAR&gt;
              &lt;OMV name=&quot;f&quot;/&gt;
              &lt;OMV name=&quot;x&quot;/&gt;
            &lt;/OMBVAR&gt;
            &lt;OMA&gt;
              &lt;OMS cd=&quot;arith1&quot; name=&quot;plus&quot;/&gt;
              &lt;OMA&gt;
                &lt;OMS cd=&quot;arith1&quot; name=&quot;minus&quot;/&gt;
                &lt;OMA&gt;
                  &lt;OMS cd=&quot;calculus1&quot; name=&quot;diff&quot;/&gt;
                  &lt;OMBIND&gt;
                    &lt;OMS cd=&quot;fns1&quot; name=&quot;lambda&quot;/&gt;
                    &lt;OMBVAR&gt;
                      &lt;OMV name=&quot;x&quot;/&gt;
                    &lt;/OMBVAR&gt;
                    &lt;OMA&gt;
                      &lt;OMV name=&quot;f&quot;/&gt;
                      &lt;OMV name=&quot;x&quot;/&gt;
 &lt;OMComment&gt; N.B. this 'x' is from the inner 'lambda' binding &lt;/OMComment&gt;
                    &lt;/OMA&gt;
                  &lt;/OMBIND&gt;
                &lt;/OMA&gt;
                &lt;OMBIND&gt;
                  &lt;OMS cd=&quot;fns1&quot; name=&quot;lambda&quot;/&gt;
                  &lt;OMBVAR&gt;
                    &lt;OMV name=&quot;x&quot;/&gt;
                  &lt;/OMBVAR&gt;
                  &lt;OMA&gt;
                    &lt;OMV name=&quot;f&quot;/&gt;
                    &lt;OMV name=&quot;x&quot;/&gt;
&lt;OMComment&gt; see above coment &lt;/OMComment&gt;
                  &lt;/OMA&gt;
                &lt;/OMBIND&gt;
              &lt;/OMA&gt;
              &lt;OMV name=&quot;x&quot;/&gt;
&lt;OMComment&gt; this 'x' is from the outer 'ODEsolution' binding &lt;/OMComment&gt;
            &lt;/OMA&gt;
            &lt;OMA&gt;
              &lt;OMS cd=&quot;list1&quot; name=&quot;list&quot;/&gt;
              &lt;OMA&gt;
                &lt;OMS cd=&quot;relation1&quot; name=&quot;eq&quot;/&gt;
                &lt;OMA&gt;
                  &lt;OMV name=&quot;f&quot;/&gt;
                  &lt;OMI&gt; 0 &lt;/OMI&gt;
                &lt;/OMA&gt;
                &lt;OMI&gt; 1 &lt;/OMI&gt;
              &lt;/OMA&gt;
&lt;OMComment&gt;
in this case there is only 1 element in the list of conditions,
however in general there will be $n$ elements where $n$ is the degree
of the ODE
&lt;/OMComment&gt;
            &lt;/OMA&gt;
          &lt;/OMBIND&gt;
          &lt;OMBIND&gt;
            &lt;OMS cd=&quot;fns1&quot; name=&quot;lambda&quot;/&gt;
            &lt;OMBVAR&gt;
              &lt;OMV name=&quot;x&quot;/&gt;
            &lt;/OMBVAR&gt;
            &lt;OMA&gt;
              &lt;OMS cd=&quot;arith1&quot; name=&quot;plus&quot;/&gt;
              &lt;OMV name=&quot;x&quot;/&gt;
              &lt;OMS cd=&quot;alg1&quot; name=&quot;one&quot;/&gt;
            &lt;/OMA&gt;
          &lt;/OMBIND&gt;
        &lt;/OMA&gt;
      &lt;/OMOBJ&gt;</pre>
<p>
        <a href="relation1.html#eq">eq</a>
(<a href="odesoln1.html#ODEsolution">ODEsolution</a>
[
               <i>f</i>
               <i>x</i>
            ] .
(<a href="arith1.html#plus">plus</a>
(<a href="arith1.html#minus">minus</a>
(<a href="calculus1.html#diff">diff</a>
(<a href="fns1.html#lambda">lambda</a>
[
                       <i>x</i>
                    ] .
( <i>f</i>
( <i>x</i>,  N.B. this 'x' is from the inner 'lambda' binding )
)
)
, <a href="fns1.html#lambda">lambda</a>
[
                     <i>x</i>
                  ] .
( <i>f</i>
( <i>x</i>,  see above coment )
)
)
,  <i>x</i>,  this 'x' is from the outer 'ODEsolution' binding )
<a href="list1.html#list">list</a>
(<a href="relation1.html#eq">eq</a>
( <i>f</i>
( 0 )
,  1 )
, 
in this case there is only 1 element in the list of conditions,
however in general there will be $n$ elements where $n$ is the degree
of the ODE
)
)
, <a href="fns1.html#lambda">lambda</a>
[
               <i>x</i>
            ] .
(<a href="arith1.html#plus">plus</a>
( <i>x</i>, <a href="alg1.html#one">one</a>)
)
)

      </p>
    </dd>
</dl>
  <dl>
<dt><span class="dt">Signatures:</span></dt>
<dd><a href="../sts/odesoln1.html#ODEsolution">
      sts
      </a></dd>
</dl>
<p></p>
<hr>
<table width="100%"><tr><td align="right"><font size="-1">
      [First: <a href="#ODEsolution">ODEsolution</a>]
    
      [Last: <a href="#ODEsolution">ODEsolution</a>]
    
[<a href="#top">Top</a>]</font></td></tr></table>
</body>
</html>


More information about the Om mailing list